软件分析

南京大学 程序设计语言与 计算机科学与技术系 李樾 谭添

Static Program Analysis Data Flow Analysis — Foundations

Nanjing University

Yue Li

2022

contents (1)

- 1. Iterative Algorithm, Another View
- 2. Partial Order
- 3. Upper and Lower Bounds
- 4. Lattice, Semilattice, Complete and Product Lattice
- 5. Data Flow Analysis Framework via Lattice
- 6. Monotonicity and Fixed Point Theorem

- 7. Relate Iterative Algorithm to Fixed Point Theorem
- 8. May/Must Analysis, A Lattice View
- 9. MOP and Distributivity
- 10. Constant Propagation
- 11. Worklist Algorithm

contents (11)

Iterative Algorithm for May & Forward Analysis

INPUT: CFG ($kill_B$ and gen_B computed for each basic block B)

OUTPUT: IN[B] and OUT[B] for each basic block B

METHOD:

```
OUT[entry] = \emptyset;
for (each basic block B\entry)
    OUT[B] = \emptyset;
while (changes to any OUT occur)
    for (each basic block B\entry) {
         IN[B] = \bigcup_{P \text{ a predecessor of } B} OUT[P];
        OUT[B] = gen_B U (IN[B] - kill_B);
```

View Iterative Algorithm in Another Way

- Given a CFG (program) with k nodes, the iterative algorithm updates OUT[n] for every node n in each iteration.
- Assume the domain of the values in data flow analysis is V, then we can define a k-tuple

```
(OUT[n_1], OUT[n_2], ..., OUT[n_k])
```

as an element of set $(V_1 \times V_2 ... \times V_k)$ denoted as V^k , to hold the values of the analysis after each iteration.

- Each iteration can be considered as taking an action to map an element of V^k to a new element of V^k , through applying the transfer functions and control-flow handing, abstracted as a function $F: V^k \to V^k$
- Then the algorithm outputs a series of k-tuples iteratively until a k-tuple is the same as the last one in two consecutive iterations

```
OUT[entry] = \emptyset;

for (each basic block B \setminus entry)

OUT[B] = \emptyset;

while (changes to any OUT occur)

for (each basic block B \setminus entry) {

IN[B] = \bigcup_{P \text{ a predecessor of } B} OUT[P];

OUT[B] = gen_B \cup (IN[B] - kill_B);

}
```

Given a CFG (program) with k nodes, the iterative algorithm updates OUT[n] for every node n in each iteration.

Each iteration takes an action $F: V^k \rightarrow V^k$

The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

- Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most precise)?
- When will the algorithm reach the fixed point, or when can we get the solution?

To answer these questions, let us learn some math first

We define poset as a pair (P, \sqsubseteq) where \sqsubseteq is a binary relation that defines a partial ordering over P, and \sqsubseteq has the following properties:

- (1) $\forall x \in P, x \sqsubseteq x$ (Reflexivity)
- (2) $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$ (Antisymmetry)
- (3) $\forall x, y, z \in P, x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$ (*Transitivity*)

Example 1. Is (S, \sqsubseteq) a poset where S is a set of integers and \sqsubseteq represents \leq (less than or equal to)?

- $(1) Reflexivity 1 \le 1, 2 \le 2$
- (2) Antisymmetry $x \le y \land y \le x$ then x = y
- (3) Transitivity $1 \le 2 \land 2 \le 3$ then $1 \le 3$

We define poset as a pair (P, \sqsubseteq) where \sqsubseteq is a binary relation that defines a partial ordering over P, and \sqsubseteq has the following properties:

- (1) $\forall x \in P, x \sqsubseteq x$ (Reflexivity)
- (2) $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$ (Antisymmetry)
- (3) $\forall x, y, z \in P, x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$ (*Transitivity*)

Example 2. Is (S, \sqsubseteq) a poset where S is a set of integers and \sqsubseteq represents < (less than)?

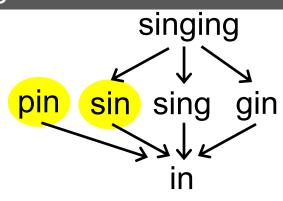
$$(1)$$
 Reflexivity 1 < 1, 2 < 2

We define poset as a pair (P, \sqsubseteq) where \sqsubseteq is a binary relation that defines a partial ordering over P, and \sqsubseteq has the following properties:

- (1) $\forall x \in P, x \sqsubseteq x$ (Reflexivity)
- (2) $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$ (Antisymmetry)
- (3) $\forall x, y, z \in P, x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$ (*Transitivity*)

partial means for a pair of set elements in P, they could be incomparable; in other words, not necessary that every pair of set elements must satisfy the ordering ⊑

- (1) Reflexivity
- (2) Antisymmetry
- (3) Transitivity

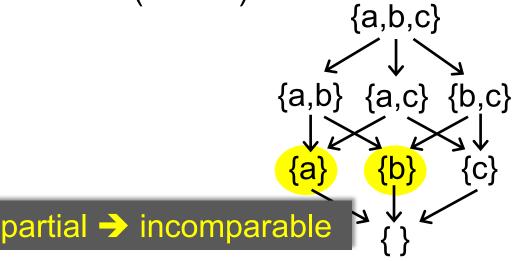


We define poset as a pair (P, \sqsubseteq) where \sqsubseteq is a binary relation that defines a partial ordering over P, and \sqsubseteq has the following properties:

- (1) $\forall x \in P, x \sqsubseteq x$ (Reflexivity)
- (2) $\forall x, y \in P, x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$ (Antisymmetry)
- (3) $\forall x, y, z \in P, x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$ (*Transitivity*)

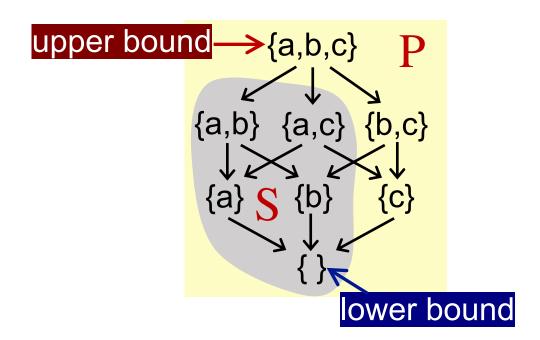
Example 4. Is (S, \sqsubseteq) a poset where S is the power set of set $\{a,b,c\}$ and \sqsubseteq represents \subseteq (subset)?

- (1) Reflexivity
- (2) Antisymmetry
- (3) Transitivity



Upper and Lower Bounds

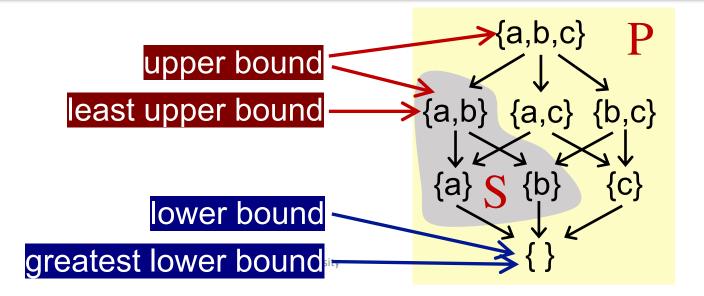
Given a poset (P, \sqsubseteq) and its subset S that $S \subseteq P$, we say that $u \in P$ is an *upper bound* of S, if $\forall x \in S, x \sqsubseteq u$. Similarly, $1 \in P$ is an *lower bound* of S, if $\forall x \in S, 1 \sqsubseteq x$.



Upper and Lower Bounds

Given a poset (P, \sqsubseteq) and its subset S that $S \subseteq P$, we say that $u \in P$ is an *upper bound* of S, if $\forall x \in S, x \sqsubseteq u$. Similarly, $1 \in P$ is an *lower bound* of S, if $\forall x \in S, 1 \sqsubseteq x$.

We define the *least upper bound* (lub or join) of S, written $\sqcup S$, if for every upper bound of S, say u, $\sqcup S \sqsubseteq u$. Similarly, We define the *greatest lower bound* (glb, or meet) of S, written $\sqcap S$, if for every lower bound of S, say $1,1 \sqsubseteq \sqcap S$.



Upper and Lower Bounds

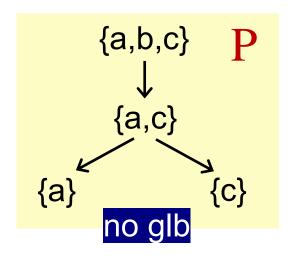
Given a poset (P, \sqsubseteq) and its subset S that $S \subseteq P$, we say that $u \in P$ is an *upper bound* of S, if $\forall x \in S, x \sqsubseteq u$. Similarly, $1 \in P$ is an *lower bound* of S, if $\forall x \in S, 1 \sqsubseteq x$.

We define the *least upper bound* (lub or join) of S, written $\sqcup S$, if for every upper bound of S, say u, $\sqcup S \sqsubseteq u$. Similarly, We define the *greatest lower bound* (glb, or meet) of S, written $\sqcap S$, if for every lower bound of S, say $1,1 \sqsubseteq \sqcap S$.

Usually, if S contains only two elements a and b ($S = \{a, b\}$), then $\sqcup S$ can be written a $\sqcup B$ (the join of a and b) $\sqcap S$ can be written a $\sqcap B$ (the meet of a and b)

Some Properties

Not every poset has lub or glb



But if a poset has lub or glb, it will be unique

```
Proof.

assume g_1 and g_2 are both glbs of poset P according to the definition of glb

g_1 \sqsubseteq (g_2 = \sqcap P) and g_2 \sqsubseteq (g_1 = \sqcap P)

by the antisymmetry of partial order \sqsubseteq

g_1 = g_2
```

Given a poset (P, \sqsubseteq) , $\forall a, b \in P$, if $a \sqcup b$ and $a \sqcap b$ exist, then (P, \sqsubseteq) is called a lattice

A poset is a lattice if every pair of its elements has a least upper bound and a greatest lower bound

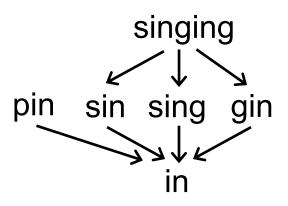
Example 1. Is (S, \sqsubseteq) a lattice where S is a set of integers and \sqsubseteq represents \leq (less than or equal to)?

The ⊔ operator means "max" and ⊓ operator means "min"

Given a poset (P, \sqsubseteq) , $\forall a, b \in P$, if $a \sqcup b$ and $a \sqcap b$ exist, then (P, \sqsubseteq) is called a lattice

A poset is a lattice if every pair of its elements has a least upper bound and a greatest lower bound

Example 2. Is (S, ⊆) a lattice where S is a set of English words and ⊆ represents the *substring* relation, i.e., s1 ⊆ s2 means s1 is a substring of s2?

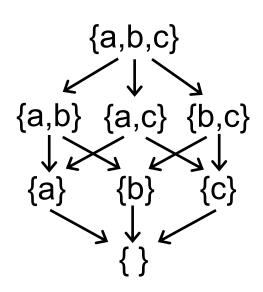


Given a poset (P, \sqsubseteq) , $\forall a, b \in P$, if $a \sqcup b$ and $a \sqcap b$ exist, then (P, \sqsubseteq) is called a lattice

A poset is a lattice if every pair of its elements has a least upper bound and a greatest lower bound

Example 3. Is (S, \sqsubseteq) a lattice where S is the power set of set $\{a,b,c\}$ and \sqsubseteq represents \subseteq (subset)?

The ⊔ operator means ∪ and ⊓ operator means ∩



Given a poset (P, \sqsubseteq) , $\forall a, b \in P$, if $a \sqcup b$ and $a \sqcap b$ exist, then (P, \sqsubseteq) is called a lattice

A poset is a lattice if every pair of its elements has a least upper bound and a greatest lower bound

Semilattice

Given a poset (P, \sqsubseteq) , $\forall a, b \in P$, if only a \sqcup b exists, then (P, \sqsubseteq) is called a join semilattice if only a \sqcap b exists, then (P, \sqsubseteq) is called a meet semilattice

Complete Lattice

Given a lattice (P, \sqsubseteq) , for arbitrary subset S of P, if \sqcup S and \sqcap S exist, then (P, \sqsubseteq) is called a complete lattice

All subsets of a lattice have a least upper bound and a greatest lower bound

Example 1. Is (S, \sqsubseteq) a complete lattice where S is a set of integers and \sqsubseteq represents \leq (less than or equal to)?

For a subset S^+ including all positive integers, it has no $\sqcup S^+$ ($+\infty$)

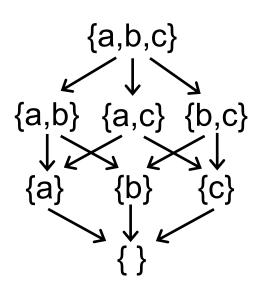
Complete Lattice

Given a lattice (P, \sqsubseteq) , for arbitrary subset S of P, if \sqcup S and \sqcap S exist, then (P, \sqsubseteq) is called a complete lattice

All subsets of a lattice have a least upper bound and a greatest lower bound

Example 2. Is (S, \sqsubseteq) a complete lattice where S is the power set of set $\{a,b,c\}$ and \sqsubseteq represents \subseteq (subset)?

Note: the definition of bounds implies that the bounds are not necessarily in the subsets (but they must be in the lattice)



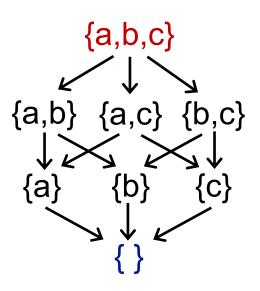
Complete Lattice Mostly focused in data flow analysis

Given a lattice (P, \sqsubseteq) , for arbitrary subset S of P, if \sqcup S and \sqcap S exist, then (P, \sqsubseteq) is called a complete lattice

All subsets of a lattice have a least upper bound and a greatest lower bound

Every complete lattice (P, \sqsubseteq) has a greatest element $T = \sqcup P$ called top and a least element $\bot = \sqcap P$ called bottom

Every finite lattice (P is finite) is a complete lattice



Product Lattice

Given lattices $L_1 = (P_1, \sqsubseteq_1), L_2 = (P_2, \sqsubseteq_2), ..., L_n = (P_n, \sqsubseteq_n)$, if for all i, (P_i, \sqsubseteq_i) has \sqcup_i (least upper bound) and \sqcap_i (greatest lower bound), then we can have a product lattice $L^n = (P, \sqsubseteq)$ that is defined by:

- $P = P_1 \times ... \times P_n$
- $(x_1, ..., x_n) \sqsubseteq (y_1, ..., y_n) \Leftrightarrow (x_1 \sqsubseteq y_1) \land ... \land (x_n \sqsubseteq y_n)$
- $(x_1, ..., x_n) \sqcup (y_1, ..., y_n) = (x_1 \sqcup_1 y_1, ..., x_n \sqcup_n y_n)$
- $(x_1, ..., x_n) \sqcap (y_1, ..., y_n) = (x_1 \sqcap_1 y_1, ..., x_n \sqcap_n y_n)$

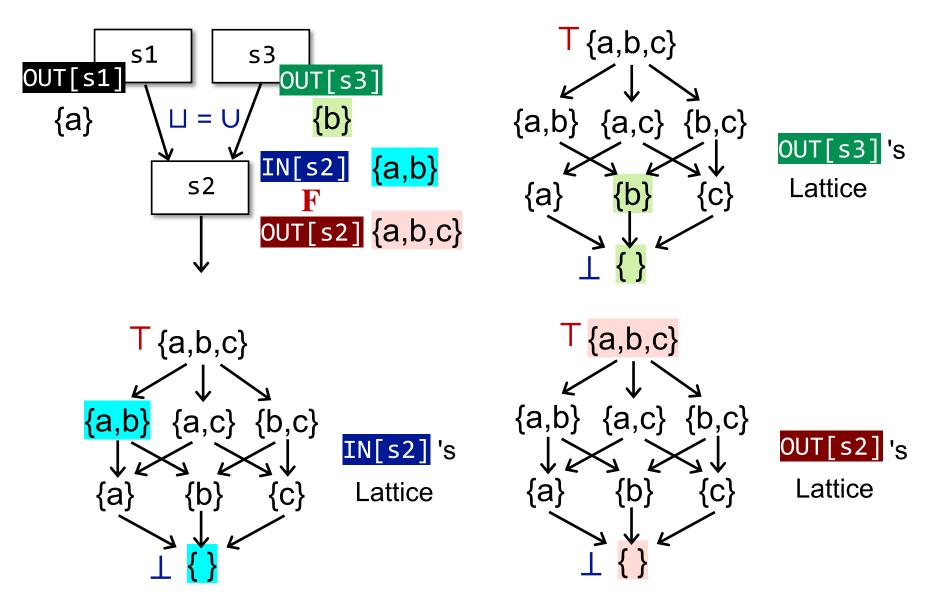
- A product lattice is a lattice
- If a product lattice L is a product of complete lattices, then L is also complete

Data Flow Analysis Framework via Lattice

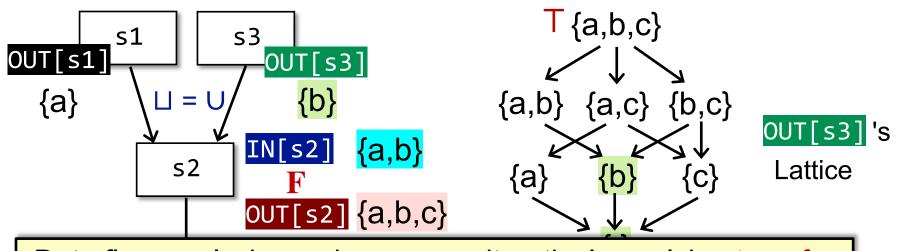
A data flow analysis framework (D, L, F) consists of:

- D: a direction of data flow: forwards or backwards
- L: a lattice including domain of the values V and a meet □ or join □ operator
- **F**: a family of transfer functions from V to V

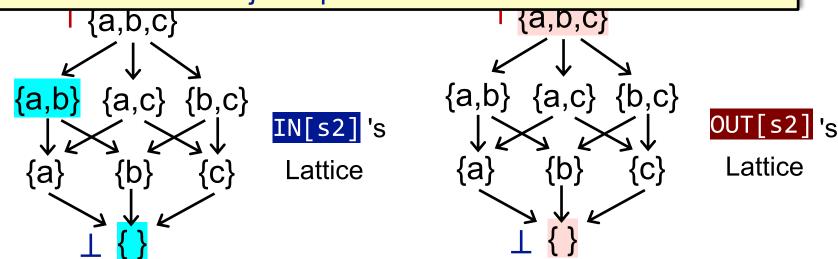
Data Flow Analysis Framework via Lattice



Data Flow Analysis Framework via Lattice



Data flow analysis can be seen as iteratively applying transfer functions and meet/join operations on the values of a lattice



Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

- Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most precise)?
- When will the algorithm reach the fixed point, or when can we get the solution?

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT produces a solution to a da Recall "OUT never shrinks" It is about monotonicity

- Is the algorithm guarante commate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most precise)?

When will the algorithm reach the fixed point, or when can we get the solution?

F(X)
e Li @ Nanjing University

Monotonicity

A function f: L \rightarrow L (L is a lattice) is monotonic if $\forall x, y \in$ L, $x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

Fixed-Point Theorem

```
Given a complete lattice (L, \sqsubseteq), if 
 (1) f: L \to L is monotonic and (2) L is finite, then the least fixed point of f can be found by iterating f(\bot), f(f(\bot)), ..., f^k(\bot) until a fixed point is reached the greatest fixed point of f can be found by iterating f(\top), f(f(\top)), ..., f^k(\top) until a fixed point is reached
```

Monotonicity

A function f: L \rightarrow L (L is a lattice) is monotonic if $\forall x, y \in$ L, $x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

Fixed-Point Theorem

```
Given a complete lattice (L, \sqsubseteq), if

(1) f: L \to L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating

f(\bot), f(f(\bot)), ..., f^k(\bot) until a fixed point is reached

the greatest fixed and the of f can be found by iterating

f(\bot) = pro^{\sqrt{e}}, f^k(\top) until a fixed point is reached

(1) Existence of fixed point
```

The fixed point is the least

Fixed-Point Theorem (Existence of Fixed Point)

Proof:

By the definition of \bot and f: L \rightarrow L, we have

$$\bot \sqsubseteq f(\bot)$$

As f is monotonic, we have

$$f(\bot) \sqsubseteq f(f(\bot)) = f^2(\bot)$$

By repeatedly applying f, we have an ascending chain

$$\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \ldots \sqsubseteq f^i(\bot)$$

As L is finite (its height is H), the values are bounded among

$$\perp$$
, f(\perp), f²(\perp) ... f^H(\perp)

When i > H, by pigeonhole principle, there exists k and j that

$$f^{k}(\bot) = f^{j}(\bot)$$
 (assume $k < j \le H+1$)

Further as $f^k(\bot) \sqsubseteq ... \sqsubseteq f^j(\bot)$ (monotonicity of f), we have

$$f^{Fix} = f^k(\bot) = f^{k+1}(\bot) = \dots = f^j(\bot)$$
 (proof by contradiction)

Thus, the fixed point exists.

Fixed-Point Theorem (Least Fixed Point)

Proof:

Assume we have another fixed point x, i.e., x = f(x)

By the definition of \bot , we have $\bot \sqsubseteq x$

Induction begins:

As f is monotonic, we have

$$f(\bot) \sqsubseteq f(x)$$

Assume $f^i(\bot) \sqsubseteq f^i(x)$, as f is monotonic, we have

$$f^{i+1}(\bot) \sqsubseteq f^{i+1}(x)$$

Thus by induction, we have

$$f^{i}(\bot) \sqsubseteq f^{i}(x)$$

Thus $f^i(\bot) \sqsubseteq f^i(x) = x$ (as x is a fixed point regardless of i), then we have

$$f^{Fix} = f^k(\bot) \sqsubseteq f^k(x) = x$$

Thus the fixed point is the least

Fixed-Point Theorem (Least Fixed Point)

Proof:

Assume we have another fixed point x, i.e., x = f(x)

By the definition of \bot , we have $\bot \sqsubseteq x$

Induction begins:

As f is monotonic, we have

$$f(\bot) \sqsubseteq f(x)$$

Assume $f^{i}(\bot) \sqsubseteq f^{i}(x)$, as f is monotonic, we have

$$f^{i+1}(\bot) \sqsubseteq f^{i+1}(x)$$

Thus by induction, we have

have

$$f^{i}(\bot) \sqsubseteq f^{i}(x)$$
 The proof for greatest
fixed point is similar
fixed point is similar
fixed point regardless of i),

Thus $f^i(\bot) \sqsubseteq f^i(x) = x$ (as x is a fixed point regardless of i), then we have

$$f^{Fix} = f^k(\bot) \sqsubseteq f^k(x) = x$$

Thus the fixed point is the least

Fixed-Point Theorem

```
Given a complete lattice (L, \sqsubseteq), if 
 (1) f: L \to L is monotonic and (2) L is finite, then the least fixed point of f can be found by iterating f(\bot), f(f(\bot)), ..., f^k(\bot) until a fixed point is reached the greatest fixed point of f can be found by iterating f(\top), f(f(\top)), ..., f^k(\top) until a fixed point is reached
```

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

- Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most precise)?
- When will the algorithm reach the fixed point, or when can we get the solution?

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

- Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most or least
- When will the algorithm reach the fixed we get the solution?

Now what we have just seen is the property (fixed point theorem) for the function on a lattice. We cannot say our iterative algorithm also has that property unless we can relate the algorithm to the fixed point theorem, if possible

- 7. Relate Iterative Algorithm to Fixed Point Theorem
- 8. May/Must Analysis, A Lattice View
- 9. MOP and Distributivity
- 10. Constant Propagation
- 11. Worklist Algorithm

contents (11)

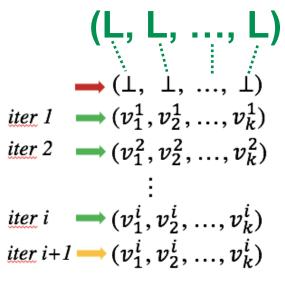
Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

- Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most or least
- When will the algorithm reach the fixed we get the solution?

Now what we have just seen is the property (fixed point theorem) for the function on a lattice. We cannot say our iterative algorithm also has that property unless we can relate the algorithm to the fixed point theorem, if possible

Relate Iterative Algorithm to Fixed-Point Theorem



If a product lattice L^k is a product of complete (and finite) lattices, i.e., (L, L, ..., L), then L^k is also complete (and finite)

In each iteration, it is equivalent to think that we apply function F which consists of

- (1) transfer function f_i: L → L for every node
- (2) join/meet function ⊔/Π: L×L → L for control-flow confluence

Given a complete lattice (L, \sqsubseteq) , if

(1) f: L \rightarrow L is monotonic and (2) L is finite, then

the least fixed point of f can be found by iterating

 $f(\perp), f(f(\perp)), \dots, f^{\underline{k}}(\perp)$ until the greatest fixed point of f can b

Now the remaining issue is to prove that function F is monotonic

 $f(\top), f(f(\top)), \dots, f^{k}(\top)$ until a linear point is reached

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F which consists of

- (1) transfer function f_i: L → L for every node
- (2) join/meet function $\Box/\Box(L\times L)\rightarrow L$ for control-flow confluence

Actually the binary operator is a basic case of $L \times L \times ... \times L$,

Gen/Kill function is monotonic

We want to show that ⊔ is monotonic

Proof.

 $\forall x, y, z \in L, x \sqsubseteq y$, we want to prove $x \sqcup z \sqsubseteq y \sqcup z$

by the definition of \sqcup , $y \sqsubseteq y \sqcup z$

by transitivity of \sqsubseteq , $x \sqsubseteq y \sqcup z$

thus $y \sqcup z$ is an upper bound for x, and also for z (by \sqcup 's definition)

as $x \sqcup z$ is the least upper bound of x and z

thus $x \sqcup z \sqsubseteq y \sqcup z$

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F which consists of

- (1) transfer function $f_i: L \rightarrow L$ for every node
- (2) join/meet function $\Box/\Box(L\times L)\rightarrow L$ for control-flow confluence

Actually the binary operator is a basic case of $L \times L \times ... \times L$,

Gen/Kill function is monotonic

We want to show that ⊔ is monotonic

```
Proof. \forall x, y, z \in L, x \sqsubseteq y, we want to prove x \sqcup z \sqsubseteq y \sqcup z by the definition of \sqcup, y \sqsubseteq y \sqcup z by transitivity of \sqsubseteq, x \sqsubseteq y \sqcup z by transitivity of \sqsubseteq, x \sqsubseteq y \sqcup z thus y \sqcup z is an upp as x \sqcup z is the least thus x \sqcup z \sqsubseteq y \sqcup z
```

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?

YES

- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (greatest or least YES)
 - When will the algorithm reach the fixed point, or when can we get the solution?

Now what we have just seen is the property (fixed point theorem) for the function on a lattice. We cannot say our iterative algorithm also has that property unless we can relate the algorithm to the fixed point theorem, if possible

When Will the Algorithm Reach the Fixed Point?

The height of a lattice *h* is the length of the longest path from Top to Bottom in the lattice.

The maximum iterations *i* needed to reach the fixed point

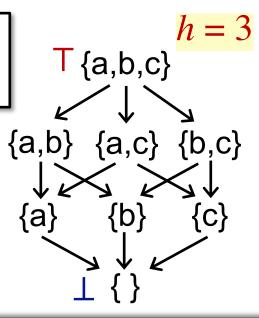
$$\rightarrow$$
 $(\bot, \bot, ..., \bot)$

iter
$$l \longrightarrow (v_1^1, v_2^1, \dots, v_k^1)$$

iter 2
$$\longrightarrow (v_1^2, v_2^2, ..., v_k^2)$$

iter
$$i \longrightarrow (v_1^i, v_2^i, ..., v_k^i)$$

iter
$$i+1 \longrightarrow (v_1^i, v_2^i, ..., v_k^i)$$



In each iteration, assume only one step in the lattice (upwards or downwards) is made in one node (e.g., one 0->1 in RD)

Assume the lattice height is h and the number of nodes in CFG is k

We need at most i = h * k iterations

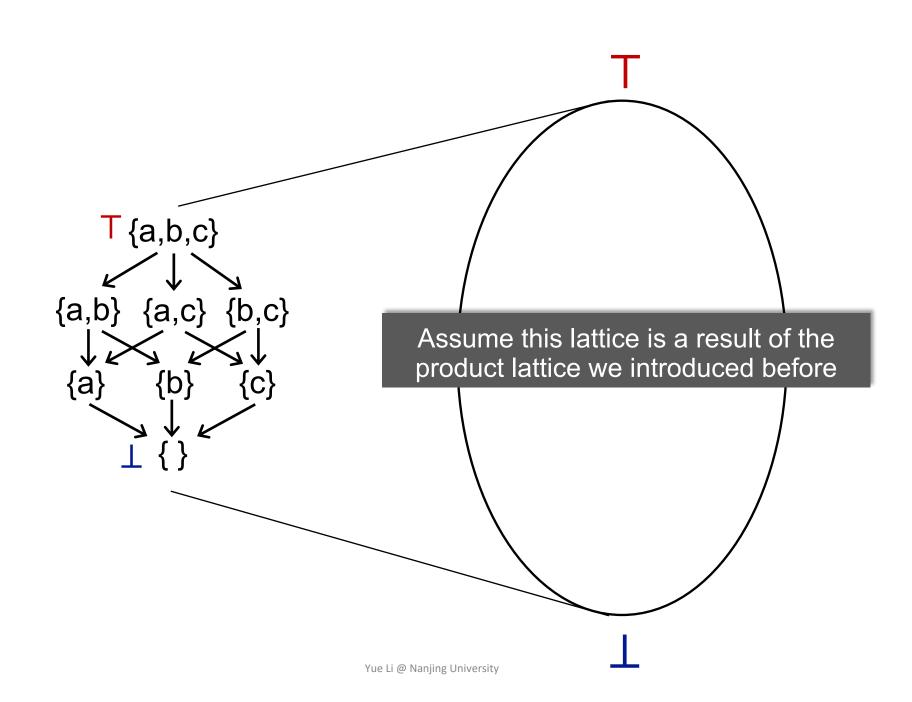
Review The Questions We Have Seen Before

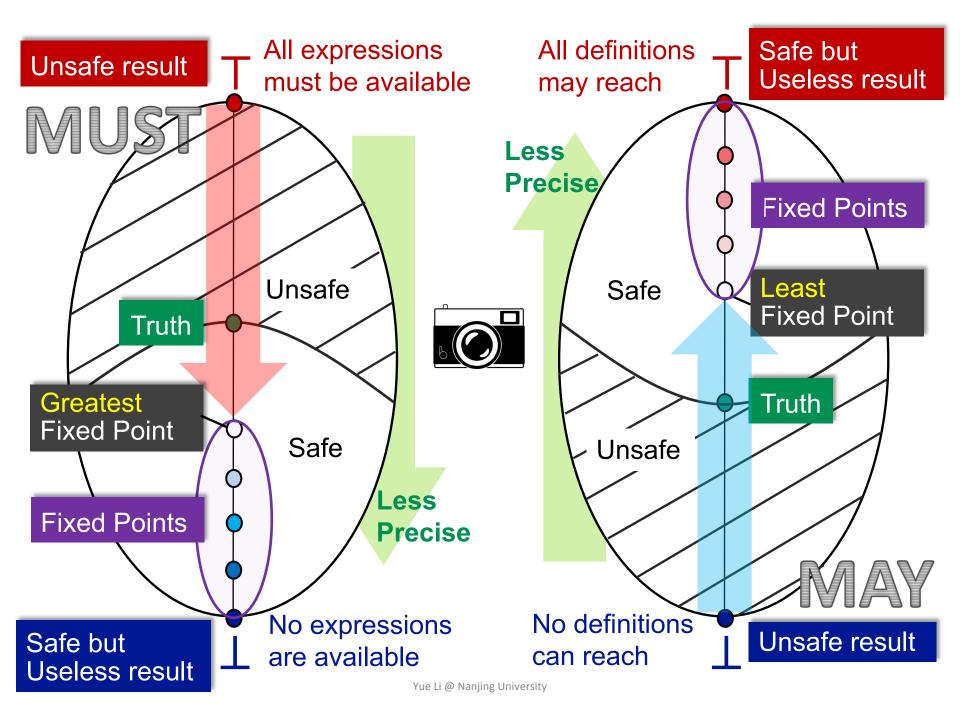
The iterative algorithm (or the IN/OUT equation system) produces a solution to a data flow analysis

- YES
 Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
- If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most precise)?
 YES
- When will the algorithm reach the fixed point, or when can we get the solution?

Worst case of #iterations:
the product of the lattice height and
the number of nodes in CFG

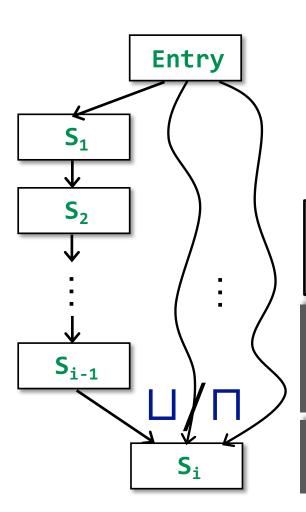
May and Must Analyses, a Lattice View





How Precise Is Our Solution?

Meet-Over-All-Paths Solution (MOP)



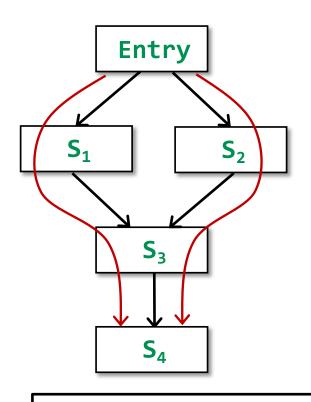
$$P = Entry \rightarrow S_1 \rightarrow S_2 \rightarrow ... \rightarrow S_i$$

Transfer function F_P for a path P (from Entry to S_i) is a composition of transfer functions for all statements on that path: f_{S1} , f_{S2} , ..., f_{Si-1}

$$MOP[S_i] = \coprod / \prod F_P(OUT[Entry])$$
A path P from Entry to S_i

MOP computes the data-flow values at the end of each path and apply join / meet operator to these values to find their lub / glb

Some paths may be not executable → not fully precise Unbounded, and not enumerable → impractical



Ours =
$$F(x \sqcup y)$$

MOP = $F(x) \sqcup F(y)$

$$IN[s_4] = f_{s_3} \left(f_{s_1} \left(OUT[Entry] \right) \sqcup f_{s_2} \left(OUT[Entry] \right) \right)$$

$$\mathsf{MOP}[\mathsf{S}_4] = f_{S_3} \left(f_{S_1} \left(\mathsf{OUT}[\mathsf{Entry}] \right) \right) \sqcup f_{S_3} \left(f_{S_2} \left(\mathsf{OUT}[\mathsf{Entry}] \right) \right)$$

Ours = $F(x \sqcup y)$ MOP = $F(x) \sqcup F(y)$

By definition of lub ⊔, we have

$$x \sqsubseteq x \sqcup y \text{ and } y \sqsubseteq x \sqcup y$$

As transfer function F is **monotonic**, we have

$$F(x) \sqsubseteq F(x \sqcup y)$$
 and $F(y) \sqsubseteq F(x \sqcup y)$

That means $F(x \sqcup y)$ is an upper bound of F(x) and F(y)

As $F(x) \sqcup F(y)$ is the lub of F(x) and F(y), we have

$$F(x) \sqcup F(y) \sqsubseteq F(x \sqcup y)$$

$$MOP \sqsubseteq Ours$$

(Ours is less precise than MOP)

When F is distributive, i.e.,

$$F(x \sqcup y) = F(x) \sqcup F(y)$$

$$MOP = Ours$$

(Ours is as precise as MOP)

Ours = $F(x \sqcup y)$ $\mathsf{MOP} = F(x) \sqcup F(y)$

By definition of lub \sqcup , we have

$$x \sqsubseteq x \sqcup y \text{ and } y \sqsubseteq x \sqcup y$$

As transfer function F is **monotonic**, we have

$$F(x) \sqsubseteq F(x \sqcup y)$$
 and $F(y) \sqsubseteq F(x \sqcup y)$

That means $F(x \sqcup y)$ is an upper bound of F(x) and F(y)

As $F(x) \sqcup F(y)$ is the hab of F(x) and F(y), we have

Bit-vector or Gen/Kill problems (set union Ours is less precise une distributive

When **F** is **distributive**, i.e.,

$$F(x \sqcup y) = F(x) \sqcup F(y)$$

$$MOP = Ours$$

(Ours is as precise as MOP)

Ours = $F(x \sqcup y)$ $\mathsf{MOP} = F(x) \sqcup F(y)$

By definition of lub \sqcup , we have

$$x \sqsubseteq x \sqcup y \text{ and } y \sqsubseteq x \sqcup y$$

As transfer function F is **monotonic**, we have

$$F(x) \sqsubseteq F(x \sqcup y)$$
 and $F(y) \sqsubseteq F(x \sqcup y)$

That means $F(x \sqcup y)$ is an upper bound of F(x) and F(y)

As $F(x) \sqcup F(y)$ is the sub of F(x) and F(y), we have

Bit-vector or Gen/Kill problemsection for join/page

When F is distributive

But some analyses are not distributive

"E distributive

$$F(x \sqcup y) = F(x) \sqcup F(y)$$

$$MOP = Ours$$

(Ours is as precise as MOP)

Constant Propagation

Given a variable x at program point p, determine whether x is guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v) where x is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:

- **D**: a direction of data flow: <u>forwards</u> or backwards
- L: a lattice including domain of the values V and a meet □ or join □ operator
 - **F**: a family of transfer functions from V to V

Constant Propagation – Lattice

Domain of the values V

UNDEF
... -2 -1 0 1 2 ...

NAC

Meet Operator □

NAC
$$\Pi v = NAC$$

UNDEF
$$\sqcap v = v$$

$$c \sqcap v = ?$$

$$-c \sqcap c = c$$

$$-c_{1} \sqcap c_{2} = NAC$$

Uninitialized variables are not the focus in our constant propagation analysis

At each path confluence PC, we should apply "meet" for all variables in the incoming data-flow values at that PC

Constant Propagation – Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen
$$\cup$$
 (IN[s] - {(x, _)})

(we use val(x) to denote the lattice value that variable x holds)

```
• s: x = c; // c is a constant gen = \{(x, c)\}

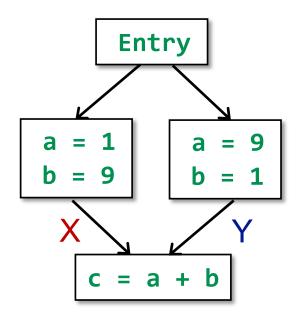
• s: x = y; gen = \{(x, val(y))\}

• s: x = y op z; gen = \{(x, f(y,z))\}

• val(y) op val(z) // if val(y) and val(z) are constants // if val(y) or val(z) is NAC // otherwise
```

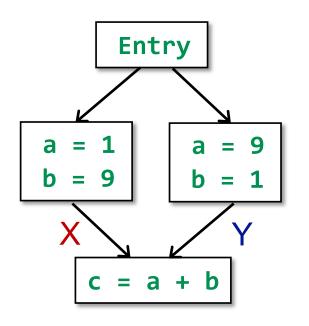
(if s is not an assignment statement, F is the identity function)

Constant Propagation – Nondistributivity



```
F(\mathbf{X} \sqcap \mathbf{Y}) = \{(a, \text{NAC}), (b, \text{NAC}), (\mathbf{c}, \text{NAC})\}
F(\mathbf{X}) \sqcap F(\mathbf{Y}) = \{(a, \text{NAC}), (b, \text{NAC}), (\mathbf{c}, 10)\}
F(\mathbf{X} \sqcap \mathbf{Y}) \neq F(\mathbf{X}) \sqcap F(\mathbf{Y})
F(\mathbf{X} \sqcap \mathbf{Y}) \sqsubseteq F(\mathbf{X}) \sqcap F(\mathbf{Y})
```

Constant Propagation – Nondistributivity



```
F(\mathbf{X} \sqcap \mathbf{Y}) = \{(a, \text{NAC}), (b, \text{NAC}), (\mathbf{c}, \text{NAC})\}
F(\mathbf{X}) \sqcap F(\mathbf{Y}) = \{(a, \text{NAC}), (b, \text{NAC}), (\mathbf{c}, 10)\}
F(\mathbf{X} \sqcap \mathbf{Y}) \neq F(\mathbf{X}) \sqcap F(\mathbf{Y})
F(\mathbf{X} \sqcap \mathbf{Y}) \sqsubseteq F(\mathbf{X}) \sqcap F(\mathbf{Y})
```

Show our constant propagation analysis is monotonic

Worklist Algorithm,

an optimization of Iterative Algorithm

Worklist Algorithm

```
Forward Analysis
OUT[entry] = \emptyset;
for (each basic block B\entry)
   OUT[B] = \emptyset;
Worklist ← all basic blocks
while (Worklist is not empty)
    Pick a basic block B from Worklist
   old OUT = OUT[B]
    IN[B] = \coprod_{P \text{ a predecessor of } B} OUT[P];
    OUT[B] = gen_B U (IN[B] - kill_B);
    if (old OUT \neq OUT[B])
       Add all successors of B to Worklist
```

Worklist Algorithm

```
Forward Analysis
OUT[entry] = \emptyset;
for (each basic block B\entry)
   OUT[B] = \emptyset;
Worklist ← all basic blocks
while (Worklist is not empty)
    Pick a basic block B from Worklist
    old OUT = OUT[B]
    IN[B] = \coprod_{P \text{ a predecessor of } B} OUT[P];
    OUT[B] = gen_B U (IN[B] - kill_B);
    if (old OUT \neq OUT[B])
       Add all successors of B to Worklist
```

Yue Li @ Nanjing University

OUT will not change if IN does not change

The X You Need To Understand in This Lecture

- Understand the functional view of iterative algorithm
- The definitions of lattice and complete lattice
- Understand the fixed-point theorem
- How to summarize may and must analyses in lattices
- The relation between MOP and the solution produced by the iterative algorithm
- Constant propagation analysis
- Worklist algorithm

注意注意! 划重点了!

Assignment Two:
Constant propagation and worklist solver