7

1%
N

T A
< B
WP g dr 4k

% o A B

G
M

Static Program Analysis

Data Flow Analysis — Foundations

Nanjing University
Yue Li

2022

0 OWEEE)

1. Iterative Algorithm, Another View

2. Partial Order

3. Upper and Lower Bounds

4. Lattice, Semilattice, Complete and Product Lattice
5. Data Flow Analysis Framework via Lattice

6. Monotonicity and Fixed Point Theorem

/. Relate Iterative Algorithm to Fixed Point Theorem
8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Iterative Algorithm for May & Forward Analysis

INPUT: CFG (killg and geng computed for each basic block B)
OUTPUT: IN[B] and OUTIB] for each basic block B

METHOD:

OUTl[entry] = ©;
for (each basic block Blentry)

OUT[B] = ¢;
while (changes to any OUT occur)
for (each basic block Blentry) {

IN[B] = UPapredecessor of B OUT[P];
OUT[B] = geng U (IN[B] - killg);

View lterative Algorithm in Another Way

 Given a CFG (program) with k nodes, the iterative algorithm
updates OUT][n] for every node n in each iteration.

« Assume the domain of the values in data flow analysis is V,
then we can define a k-tuple

(OUT[n,], OUT[n,], ..., OUT[n,])

as an element of set (V, x V, ... X V,) denoted as V¥,
to hold the values of the analysis after each iteration.

« Each iteration can be considered as taking an action to map
an element of Vk to a new element of V¥, through applying

the transfer functions and control-flow handing, abstracted
as a function F: Vk - V&

« Then the algorithm outputs a series of k-tuples iteratively
until a k-tuple is the same as the last one in two consecutive
iterations

OUT][entry] =

for (each basic block Blentry)
OUT[B] =

while (changes to any OUT occur)
for (each basic block Blentry) {

IN[B] = UPapredeoessorof B OUTIF];
OUTIB] = geng U (IN[B] - Killg);

}

init =y (L, 1,

iter I —»(vll,v%, vk)
iter 2 —;(Ulz,vzz,._.,vk)_
iter i —D(Ui,vé,.“

iter i+1 == (v} v ... vl

Given a CFG (program) with k

nodes, the iterative algorithm
updates OUT]n] for every node

n in each iteration.

Each iteration takes an action
F: Vk - Vk

, 1) =X

X is a fixed pomt of function F if
= F(X)

The iterative algorithm reaches

a fixed point

= F(X;) - X=X = F(Xi)

Yue Li @ Nanjing University

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

When will the algorithm reach the fixed point, or when can
we get the solution?

To answer these questions, let us learn some math first

Yue Li @ Nanjing University

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 1. Is (S, E) a poset where S is a set of integers
and C represents < (less than or equal to)?

\/(1)Reﬂexivity 1<1,2<2
\/ (2) Antisymmetry x <y Ay < xthenx=y
\/(3) Transitivity 1<2A2<3then1<3

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,ZzEP,XEyAyEz=>xE7zZ (Transitivity)

Example 2. Is (S, E) a poset where S is a set of integers
and C represents < (less than)?

x (1) Reflexivity 1<1,2<2

Partial Order

We define poset as a pair (P, E) where C is a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)

2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)

3) VX,y,zEP,XEyAyEz=>xEz (Transitivity)

partial means for a pair of set elements in P, they could be

Incomparable; in other words, not necessary that every pair
of set elements must satisfy the ordering C

singing
\/ (1) Reflexivity v \
V(Z)Antisymmetry pin sin sing gin
V (3) Transitivity \\v/

iN

Partial Order

We define poset as a pair (P, £) where £ 1s a binary relation that
defines a partial ordering over P, and E has the following properties:
(1) VX€eEP,XxXEX (Reflexivity)
2) VX,yEP,XEyAyEXx=x=y (Antisymmetry)
3) VX,y,zEP,XEyAyEz=>xEz (Transitivity)

Example 4. Is (S, E) a poset where S is the power set of
set {a,b,c} and C represents € (subset)?

{a,b,c}
V (1) Reflexivity N
N/ (2) Antisymmetry {ai%’%ic}
\/ (3) Transitivity @) {b} o)

partial =» mcomparable {}/

Yue Li @ Nanjing Uni

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

Upper boundEESEYNEES
LN

{a,b} {a,c} {b,c}

o< ><!

{a} S b} {c}
~ {l} e

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

B —>{a,b,c}; P
upper bound AN
EERIIENN —>{a,b} {a,c} {b,c}
l><l
lower bound {a}\s\{l} /{C}
)

Upper and Lower Bounds

Given a poset (P, E) and its subset S that S € P, we say that
u € Pis an upper bound of S,1f Vx € S, X E u. Similarly,
1 € P1s an lower bound of S,1if Vx € S, 1 E Xx.

We define the least upper bound (lub or join) of S, written LIS,

if for every upper bound of S, say u, US E u. Similarly,

We define the greatest lower bound (glb, or meet) of S, written 1S,
if for every lower bound of S, say 1,1 E MS.

Usually, if S contains only two elements a and b (S = {a, b}), then
LIS can be written a LI b (the join of a and b)
S can be written a M b (the meet of a and b)

Some Properties

Not every poset has /ub or glb J

But if a poset has /ub or glb, it will be unique

Proof.
assume g, and g, are both glbs of poset P
according to the definition of glb
g1 E (g, =MP) and g, E (g, = NP)
by the antisymmetry of partial order &

g1 = &2

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 1. Is (S, E) a lattice where S is a set of integers
and C represents < (less than or equal to)?

\/The LI operator means “max”
and N operator means “min”

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 2. Is (S, £) a lattice where S is a set of
English words and E represents the substring
relation, i.e., s1 E s2 means s1 is a substring of s27?

¥ pin U sin="7? singing
N
pin sin sing gin

\\v/

iN

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Example 3. Is (S, E) a lattice where S is the power
set of set {a,b,c} and C represents € (subset)?

{a,b,c}

\/The LI operator means U /l\

and M operator means N {a,b} {a,c} {b,c}

o< ><
{a} {b} {c}
\{l}/

Yue Li @ Nanjing University

Lattice

Given a poset (P,E),Va,b € P,if a U b and a N b exist, then
(P, E) 1s called a lattice

A poset is a lattice if every pair of its elements has a

least upper bound and a greatest lower bound

Semilattice

Given a poset (P,E), Va,b €P,
if only a U b exists, then (P,) 1s called a join semilattice

if only a M b exists, then (P, E) is called a meet semilattice

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Example 1. Is (S, £) a complete lattice where S is a set
of integers and C represents < (less than or equal to)?

x For a subset S* including all positive integers,
it has no LUS* (4+0)

Yue Li @ Nanjing University

Complete Lattice

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Example 2. Is (S, £) a complete lattice where S is the
power set of set {a,b,c} and E represents < (subset)?

{a,b,c}
Note: the definition of bounds
Implies that the bounds are not b/l\b
necessarily in the subsets (but &0} {a.c} {b.c}

they must be in the lattice) | ><< ><
{a} {b} {c}
\{l}/

Yue Li @ Nanjing University

Complete Lattice NN AEEEERNCEERTIERETEE

Given a lattice (P, E), for arbitrary subset S of P, if LIS and
NS exist, then (P, £) is called a complete lattice

All subsets of a lattice have a least upper bound and a

greatest lower bound

Every complete lattice (P, E) has
a greatest element T = LP called top and
aleast element L = MP called bottom

Every finite lattice (P is finite) is a

complete lattice

Yue Li @ Nanjing University

{a,b,c}

LN

{a,b} {a,c} {b,c}

{a} {b} {c}
~ {l} /

Product Lattice

Given lattices L, = (P,,&E,),L,=(P,,E,), ...,L,=(P,, E,), if for all 1,
(P;, £, has U; (least upper bound) and M; (greatest lower bound), then
we can have a product lattice L" = (P, £) that 1s defined by:

 P=P, X...XP,

* X X)) EGL YD) K EY)ALAXKEY,

¢ X s X)) U (YY) = XU Y, s X Uy)

* X s X) MY Yn) = KMy, s X My Yo

« A product lattice is a lattice

 If a product lattice L is a product of
complete lattices, then L is also complete

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice

A data flow analysis framework (D, L, F) consists of:

* D: adirection of data flow: forwards or backwards

* L: alattice including domain of the values V and a
meet M or join U operator

* F: afamily of transfer functions from V to V

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice
T {a,b,c}

N
{a} \U L/ {b} {a,b} {a,c} {b,c}

I {a,b) {a} {b}><{i} Lattice

l {abC} N 7

1 {}
T {a,b,c} T {a,b,c}
LN N
{a,b} {a,c} {b,c} {a,b} {a,c} {b,c}

o< o< m8ls o< | s

{a} {b} {c} |Lattice {a} {b} {c} Lattice

N N
Iy L{)

Yue Li @ Nanjing University

Data Flow Analysis Framework via Lattice
T {a,b,c}

N
{a} \U L/ {b} {a,b} {a,c} {b,c}

I {a,b) {a} {b}><{i} Lattice

{abC} N) 7

e

Data flow analysis can be seen as iteratively applying transfer
functions and meet/join operations on the values of a lattice

{a,b,C} {a,D,Cj}
LN N
{a,b} {a,c} {b,c} {a,b} {a,c} {b,c}

o< o< m8ls o< | s

{a} {b} {c} |Lattice {a} {b} {c} Lattice

N N
Iy L{)

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

-r? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

* If so, is there only one solution or only one fixed point? If
more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Review The Questions We Have Seen Before

* point, or does it always have a solution?

f? If so, is there only one solution or only one fixed point? If
* more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Yue Li @ Nanjing Universit

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L = L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., <L) until a fixed point is reached
the greatest fixed point of can be found by iterating
f(T), f(f(T)), ..., (T) until a fixed point is reached

Monotonicity

A function f: L —» L (L 1s a lattice) 1s monotonic if Vx,y € L,
x Ey=1(x) E 1(y)

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L = L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L1)), ..., (L) until a fixed point is reached
the greatest fixcdsaht of f can be found by iterating

(T) until a fixed point is reached

(1) Existence of fixed point

(2) The fixed point is the least

Yue Li @ Nanjing University

Fixed-Point Theorem (Existence of Fixed Point)

Proof:
By the definition of L and f: L — L, we have
1 EAf(L)
As f 1s monotonic, we have
f(L) E f(f(L)) = f2(1)
By repeatedly applying f, we have an ascending chain
LCf(LHERA(LE ...Cfi(l)
As L 1s finite (its height 1s H), the values are bounded among
1, f(L),f2(L) ... (1)
When 1 > H, by pigeonhole principle, there exists k and j that
fX(1) = (L) (assume k < j < H+1)
Further as f*(1) C ... E fi(1) (monotonicity of f), we have
ffix = f%(1) = f+1(1) = ... = i(L) (proof by contradiction)
Thus, the fixed point exists.

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x
Induction begins:
As f 1S monotonic, we have

f(L) E {(x)
Assume f'(1) E fi(x), as f is monotonic, we have

fi+1(J_) - fi"'l(X)

Thus by induction, we have

fi(L) E fi(x)
Thus fi(1) E fi(x) = x (as x is a fixed point regardless of i),
then we have

ffix = fk(1) E fX(x) = x

Thus the fixed point is the least

Fixed-Point Theorem (Least Fixed Point)

Proof:
Assume we have another fixed point x, 1.e., X = {(X)
By the definition of L, we have L E x
Induction begins:
As f 1S monotonic, we have
f(L) E {(x)

Assume f'(1) E fi(x), as f is monotonic, we have

fi+1(J_) - fi+1(X)
Thus by induction, we have

Thus fi(1) E fi(x) = x (as x is a fixed®
then we have

ffix = fk(1) E fX(x) = x
Thus the fixed point is the least

Fixed-Point Theorem

Given a complete lattice (L, E), 1f
(1) f: L — L 1s monotonic and (2) L is finite, then
the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., <L) until a fixed point is reached
the greatest fixed point of can be found by iterating
f(T), f(f(T)), ..., (T) until a fixed point is reached

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

-r? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

r? If so, is there onIy one solution or only one fixed point? If
* more than one, is our solution the best one (most precise)?

* When will the algorithm reach the fixed point, or when can
we get the solution?

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

.f? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

f? If so, is there only one solution or only one fixed point? If
®* more than one, is our solution the best one (mg

« When will the algorithm reach the fixed |
we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our

iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

Yue Li @ Nanjing University

/. Relate Iterative Algorithm to Fixed Point Theorem
8. May/Must Analysis, A Lattice View

9. MOP and Distributivity

10. Constant Propagation

11. Worklist Algorithm

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

.f? Is the algorithm guaranteed to terminate or reach the fixed
* point, or does it always have a solution?

f? If so, is there only one solution or only one fixed point? If
®* more than one, is our solution the best one (mg

« When will the algorithm reach the fixed |
we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. We cannot say our

iterative algorithm also has that property unless we can
relate the algorithm to the fixed point theorem, if possible

Yue Li @ Nanjing University

Relate Iterative Algorithm to Fixed-Point Theorem

(L, L_, ey L) If a product lattice L¥ is a product of complete
RSN (and finite) lattices, i.e., (L, L, ..., L), then Lk
is also complete (and finite)

- (L, L, ..., L)
iter I == (V],V3, ..., Vi)

ter2 = (vi,v3, LM | cach iteration, it is equivalent to think that

L O ; we apply function F which consists of
LA GO RNV (1) transfer function f: L — L for every node

iter i+1 - (v}, v5, ..., v}) (2) join/meet function L /M: LxL — L for

\

control-flow confluence

Given a complete lattice (L, E), if

(1) f: L - L is monotonic|and|(2) L is finite, }.hen

the least fixed point of f can be found by iterating
f(L), f(f(L)), ..., X(L) until

the greatest fixed point of f can b
f(T), f(f(T1)), ..., £X(T) until ¥

Now the remaining issue is to
prove that fqnc;tion F is monotonic

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of
(1) transfer function f;: L - %&Severy node

L

(2) join/meet function L /M{LxL)- L for\:ontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z

by transitivity of E,x E y Ll z

thus y Ll z 1s an upper bound for x, and also for z (by U’s definition)
as x U z 1s the least upper bound of x and z

thusxUzEyUz

Yue Li @ Nanjing University

Prove Function F is Monotonic

In each iteration, it is equivalent to think that we apply function F
which consists of

(1) transfer function f;: L - %&Severy node
L

(2) join/meet function L /M{LxL)- L for\pontrol-flow confluence
N—r WV

AUEUVAUCRYUEDRCCIEIMERY Gen/Kill function is monotonic
a basiccaseof L x L x... X L,

We want to show that U is monotonic

Proof.
VXx,y,z€ L, xEy,wewanttoprovexUzEyLUz

by the definitionof I,y E y Ll z
by transitivity of £, x T _
thus y U z 1s an uppagq = aeg ithm 10 W 0 s definition)
as X U z 1s the least
thusx UzEyUz

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis

YES

\/ Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

\y If so, rs-there—entﬂyheﬁe-eehﬂen-eﬁeﬁtﬂrehe-teeed-pﬁﬁt?

When will the algorithm reach the fixed point, or when can
* we get the solution?

Now what we have just seen is the property (fixed point
theorem) for the function on a lattice. VW'c cannct say cur

LV uuvvuvv ILII 11 GVAIWVW 11GAW LI IuUAL rlvrlv]u

relate the algorithm to the fixed point theorem ———————

Yue Li @ Nanjing University

When Will the Algorithm Reach the Fixed Point?

The height of a lattice /4 1s the length of the h=73
X : T{ab.c)

longest path from Top to Bottom in the lattice. / l/ \
{a,b} {a,c} {b,c}

The maximum iterations [l,x ><l,

needed to reach the fixed point {a} {b} {c}
— (L L . D) ThH

iter 1 = (p1 vl .. vl : :

. (ISR S A2 |h cach iteration, assume only one step

iter 2w (Ulz , 1722 S e, U,%) in the lattice (upwards or downwards) is
_ made in one node (e.g., one 0->1 in RD)

_ : _ B Assume the lattice height is / and the
iter | (Ui] vé e, v;{) number of nodes in CFG is k

iter i+1 (Ui : Ué e, v;() We need at most i = /h*k iterations

Yue Li @ Nanjing University

Review The Questions We Have Seen Before

The iterative algorithm (or the IN/OUT equation system)
produces a solution to a data flow analysis
YES
\/ Is the algorithm guaranteed to terminate or reach the fixed
point, or does it always have a solution?

\7 If S0, is-there-onty-one—solution-orenly-oncfeapotnt? If

more than one, is our solution the besYtErée (most precise)?
\/ When will the algorithm reach the fixed point, or when can
we get the solution?

£ #iterations.
\Worst case Ot 7 O and
ct of the \attice h (%FG

rodu
the t‘;‘e number Of n

Yue Li @ Nanjing University

May and Must Analyses, a Lattice View

T{a,b,c}

LN

{a,b} {a,c} {b,c}

{a} {b} {c}
N
1 {}

Assume this lattice is a result of the

product lattice we introduced before

Yue Li @ Nanjing University

Unsafe result BB

Greatest

Fixed Points

Safe but

Useless result

Fixed Point '

All expressions
must be available

Less
Precise

No expressions
are available

All definitions —— ISEI=Re]li
may reach Useless result

Fixed Points

Less
Precise

Safe /CER
Fixed Point
_~ ’
/ Truth
A
Unsafe

.

No definitions
can reach

AVAY

Yue Li @ Nanjing University

How Precise Is Our Solution?

* Meet-Over-All-Paths Solution (MOP)

Entry

P =Entry 2 5,2 5,2 .. 2> S,

Transfer function Fy for a path P (from Entry
to S,) is a composition of transfer functions for
all statements on that path: fgq, fs,, ..., fsi 1

MOP[s]= LI/M Fp(OUTEntry])

A path P from Entry to S;

MOP computes the data-flow values at the end of

each path and apply join / meet operator to these
values to find their lub / glb

Some paths may be not executable = not fully precise
Unbounded, and not enumerable =» impractical

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP

Entry ?_
// \\ Ours=F(xuy) =

[s: 2|

MOP = F(x) u F(y)
N

S3

\ 4 \l/v

S4

|N[S4] = fgg (f;‘1 (OUT[Entr'y]) L] sz (OUT[Entr'y]))

MOP[s,4] = f5, (fs, (OUT[entry])) U f5, (fs, (OUT[Entry]))

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP "5 < _ F(x U y)

By definition of lub U, we have MOP = F(x) U F(y)

xExUyandyEx Uy

As transfer function F is monotonic, we have
F(x) EF(x Uy)and F(y) EF(Xx U Yy)

That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s the lub of F(x) and F(y), we have

F(x)UF(y)EFXx UYy)

MOP E Ours
(Ours is less precise than MOP)

When F is distributive, i.c.,
F(x U y) = F(x) U F(y)
MOP = Ours
(Owrs is as precise as MOP)

Ours (lterative Algorithm) vs. MOP [< - F(x U y)

By definition of lub LI, we have MOP = F(x) U F(y)
xExUyandyEx Uy

As transfer function F is monotonic, we have

F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s thg

When F is distributive, i.c.,

F(x Uy)=F(x) U F(y)
MOP = Ours

(Ouwrs is as precise as MOP)

Yue Li @ Nanjing University

Ours (lterative Algorithm) vs. MOP [< - F(x U y)

By definition of lub LI, we have MOP = F(x) U F(y)
xExUyandyEx Uy

As transfer function F is monotonic, we have

F(x) EF(x Uy)and F(y) EF(Xx U Yy)
That means F(x LI y) 1s an upper bound of F(x) and F(y)
As F(x) U F(y) 1s thg

(Ouwurs is less precise Ui
aﬂa\VSGS

MOP = Ours

(Ouwrs is as precise as MOP)

Yue Li @ Nanjing University

Constant Propagation

Given a variable x at program point p, determine whether x 1s
guaranteed to hold a constant value at p.

- The OUT of each node in CFG, includes a set of pairs (x, v)
where X is a variable and v is the value held by x after that node

A data flow analysis framework (D, L, F) consists of:
* D: adirection of data flow: forwards or backwards
? L: a lattice including domain of the values V and a

meet M or join U operator
b F: a family of transfer functions from V to V

Constant Propagation — Lattice

 Domain of the values V /?\Tii\\
-2 -1
 Meet Operator I NAC
NAC v =NAC
UNDEFMNv=v Uninitialized variables are not the focus
in our constant propagation analysis
cfv="

At each path confluence PC, we should
-clc=c apply “meet” for all variables in the
-¢; M ¢, =NAC incoming data-flow values at that PC

Yue Li @ Nanjing University

Constant Propagation — Transfer Function

Given a statement s: x = ..., we define its transfer function F as

F: OUT[s] = gen U (IN[s] — {(x,)})

(we use val(x) to denote the lattice value that variable x holds)

« s:x=c;//cisaconstant gen ={(x, c)}

© SIX=VY; gen = {(x, val(y))}
* SIX=YyoOpZ gen = {(x, f(y,z))}

— val(y) op val(z) //if val(y) and val(z) are constants
fly,z) =3 NAC /[if val(y) or val(z) is NAC

__ UNDEF /I otherwise

(if s is not an assignment statement, F is the identity function)

Yue Li @ Nanjing University

Constant Propagation — Nondistributivity

Entry

N\

a
b

1 a
9 b

9
1

X\, Y

c=a+b

F(X MY) = {(a, NAC), (b, NAC), (c, NAC)}
F(X) M F(Y) = {(a, NAC), (b, NAC), (c, 10)}
F(X MY) # F(X) N F(Y)

F(X NY) C F(X) 1 F(Y)

Constant Propagation — Nondistributivity

Entry

/ \ F(X M'Y) = {(a, NAC), (b, NAC), (c. NAC)}

F(X) N F(Y) = {(a, NAC), (b, NAC), (c, 10)}
F(XMY)#FX)NFEY)

1 a
9 b

a
b

9
1

X\, Y

c=a+b

Yue Li @ Nanjing University

Worklist Algorithm,

an optimization of lterative Algorithm

Worklist Algorithm

OUT[entry] = @;
for (each basic block Blentry)
OUTIB] = 0;

Worklist < all basic blocks
while (Worklist is not empty)
Pick a basic block B from Worklist

old OUT = OUT[B]
IN[B] = IJPapredecessor of B OUTIFL;
OUT[B] = geng U (IN[B] - Killg);
if (old_OUT + OUTIB])
Add all successors of B to Worklist

Yue Li @ Nanjing University

Worklist Algorithm

OUT[entry] = @;
for (each basic block Blentry)
OUTIB] = 0;

Worklist < all basic blocks
while (Worklist is not empty)
Pick a basic block B from Worklist

old OUT = OUT[B]
IN[B] = IJPapredecessor of B OUTIFL;
OUT[B] = geng U (IN[B] - Killg);
if (old_OUT + OUTIB])
Add all successors of B to Worklist

OUT will not change if IN does not change

Yue Li @ Nanjing University

The X You Neeol To Understand tn This Lecture

« Understand the functional view of iterative algorithm
* The definitions of lattice and complete lattice

« Understand the fixed-point theorem

 How to summarize may and must analyses in lattices

* The relation between MOP and the solution produced
by the iterative algorithm

« Constant propagation analysis
* Worklist algorithm

AR
XMNEL27T! Assignment Two:

Constant propagation and worklist solver

Yue Li @ Nanjing University

